JENTEK[®] Sensors, Inc.

High Throughput Engine Component Inspection Using Massively Parallel Solutions

Neil Goldfine, Scott Denenberg, Yanko Sheiretov, Stuart Chaplan, Don Straney, Mark Windoloski, and Zachary Thomas

JENTEK Sensors, Inc., 110-1 Clematis Avenue, Waltham, MA 02453-7013 Tel: 781-642-9666; Email: jentek@jenteksensors.com web: jenteksensors.com

High Throughput Inspection

Goal:

Reduce inspection time

- Inspect multiple features simultaneously (need many channels, fully parallel)
- ✓ Inspect wide areas fast
- MWM-Array reduces surface preparation requirements enabling practical high throughput inspection

Reduce costs

- Lower scanner complexity results from having arrays with many channels
- MWM-Arrays provide improved performance without requiring rigidity to control lift-off
- ✓ Reduced false indication rates

Minimize burden on inspector

- ✓ Automated analysis
- ✓ Automated reporting

MWM-Array engine inspection is FAA approved on some commercial engines and has been in use by the US Navy for over 5 years with great success

High Throughput Inspection Possibilities

6x 39 channels

Engine Disk Slot Inspection (at NAVAIR Depot since 2005)

- Model-Based Calibration Verification before, during and after inspections (using MWM-Arrays)
- Disks with verified cracks detected, several of these verified large and small cracks not detected by conventional ET and LPT
- No false indications above threshold after over 9000 inspections

JENTEK[®] Sensors, Inc.

Other Inspections for Engine Applications

Knife Edge Seal Inspection

- OEM & FAA approved engine component NDT with MWM-Arrays
- FA43 MWM-Array sensor and conformable cartridges
- "Technical aspects of the method are FAA approved"

Fir Tree Inspection

• Fully integrated, automated and transportable

MWM-Array FA186 Sensor Cartridges

Packaged System

Non-application blade shown for prototyping reference

Technology Summary / Overview

1. Sensors: MWM[®]-Arrays & MWM[®]-Rosettes

 Paradigm shift in sensor design (first priority is predictable response based on physics-based modeling)

Scan Direction

3. GridStation[®] Software using Hyperlattices[™]

- Rapid, autonomous data analysis
 Performs multivariate inverse method (MIM) using precomputed databases
 - Defect Images

JENTEK[®] Sensors, Inc.

- Performance Diagnostics
- Noise Suppression

2. Next Generation 8200α GridStation[®] Electronics

- 10x signal-to-noise improvement
- Very low frequencies (deep penetration)
- Crack detection through up to 0.5 inches
 of material
- Reduced drift

Solve Multiple Unknown Problems

Slide 6

All Rights Reserved.

"Air" Calibration and Rapid Data Analysis

- Calibration in air eliminated opportunity for human error and avoids masking of degraded instrument performance.
- Grid methods convert impedance into conductivity and lift-off at each point in the image

Automatically <u>Rescales</u> Crack Response for Lift-Off Variation

Therefore C-Scan Image Threshold is Independent of Lift-off

Engine Disk Slots & Engine Blade Dovetails

JENTEK Sensors, Inc.

Engine Disk Slot Inspection

- Model-Based Calibration Verification before, during and after inspections (using MWM-Arrays)
- Disks with verified cracks detected, several of these verified large and small cracks not detected by conventional ET and LPT
- No false indications above threshold after over 9000 inspections

Conductivity

JENTEK[®] Sensors, Inc.

Automated Blade Dovetail Inspection Engine Components at FRC-SE Jacksonville, FL

Automated MWM-Array Blade Dovetail Inspection

Sensor position at edge of dovetail

Sensor position halfway down dovetail

Automated Blade Dovetail Inspection

Inspect for cracks (goal: 0.015 in. x 0.008 in.)

Sensor Coverage

MWM-Array FA57

JENTEK[®] Sensors, Inc.

Filtered MWM-Array Results

Note:

Training Set Blade Identified Prior to MWM-Array Inspection as Having "No Cracks"

JENTEK[®] Sensors, Inc.-

Bolt-Hole Inspection and Other Applications

Previous Bolt-Hole Scanner Design

- C-Scan Imaging using MWM-Arrays
- Detection of Cracks at Edges with edge location correction
- Spatial Filtering for Cracks at Edges

FA182

FA43

Mandrel Assembly with interchangeable **MWM-Arrays**

FA166

Crack Detection / C-Scan Imaging for Bolt-Holes Without bushings

JENTEK Sensors, Inc.

Detection of Cracks at Edges with GridStation Edge Location Correction

GridStation Conductivity/Lift-Off Images (Unfiltered)

Automated Crack Depth Reporting Example

JENTEK[®] Sensors, Inc.-

Summary of High Throughput Goals

JENTEK[®] Sensors, Inc.-

Goals:

- Inspect multiple features and/or
 parts simultaneously, reducing
 inspection time
- High resolution + wide scan path,
 - reducing scanner complexity
- Minimal data interpretation required
- Minimal training required

Copyright © 2013 JENTEK Sensors Slide 20 All Rights Reserved.